Effects of Muramyl Peptides on Macrophages, Monokines, and Sleep
Michael J. Pabsta, Sarka Beranova-Giorgiannia, James M. Kruegerb

aDepartments of Biochemistry and Oral Biology, University of Tennessee, Memphis, Tenn., and
bDepartment of VCAPP, Washington State University, Pullman, Wash., USA
Address of Corresponding Author
NeuroImmunoModulation 1999;6:261-283 (DOI: 10.1159/000026384)

Key Words
- Muramyl peptides
- Peptidoglycan
- Macrophages
- Oxygen radicals
- Superoxide
- Interleukin-1
- Tumor necrosis factor-\textalpha{}
- Fever
- Sleep

Abstract
Muramyl peptides are fragments of peptidoglycan from the cell walls of bacteria. Because of their unique chemistry, the immune system recognizes that muramyl peptides are products of bacteria, and it responds by becoming activated to resist infection. This resistance to infection is nonspecific, and extends to unrelated species of bacteria, fungi, and viruses. A key mechanism of the resistance to infection is activation of macrophages. Macrophage activation results in increased production of microbicidal oxygen radicals like superoxide and peroxide, and in increased secretion of inflammatory cytokines like interleukin-1\textbeta{} and tumor necrosis factor-\textalpha{}. These cytokines, besides activating neutrophils, B lymphocytes, and T lymphocytes, act on the central nervous system to induce physiological responses like fever and sleep. These physiological responses also aid in combating infection. Muramyl peptides also activate macrophages and other cells of the immune system to kill cancer cells. Muramyl peptides and similar agents will become more important as therapeutic agents in the future, due to increasing resistance of microbes to antibiotics, and increasing numbers of patients with immunodeficiencies.

Author Contacts
Michael J. Pabst
Room 215, Nash Building, 894 Union Avenue
Memphis, TN 38163 (USA)
Tel. +1 (901) 448 6058, Fax +1 (901) 448 7860
E-Mail mpabst@utmem.edu
Article Information
Received: February 23, 1998
Accepted: May 15, 1998
Number of Print Pages: 23
Number of Figures: 9, Number of Tables: 0, Number of References: 177